An existence result for singular nonlocal fractional Kirchhoff–Schrödinger–Poisson system

نویسندگان

چکیده

In this paper, we study the existence of infinitely many weak solutions to a fractional Kirchhoff-Schr\"{o}dinger-Poisson system involving singularity, i.e. when $0<\gamma<1$. Further, obtain solution with strong $\gamma>1$. We employ variational techniques prove and multiplicity results. Moreover, $L^{\infty}$ estimate is obtained by using Moser iteration method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An existence result for n^{th}-order nonlinear fractional differential equations

In this paper, we investigate the existence of solutions of some three-point boundary value problems for n-th order nonlinear fractional differential equations with higher boundary conditions by using a fixed point theorem on cones.

متن کامل

Existence of Mild Solutions for Nonlocal Semilinear Fractional Evolution Equations

In this paper, we investigate a class of semilinear fractional evolution equations with nonlocal initial conditions given by (1) ⎧⎨ ⎩ dqu(t) dtq = Au(t)+(Fu)(t), t ∈ I, u(0)+g(u) = u0, where 0 < q< 1 , I is a compact interval. Sufficient conditions for the existence of mild solutions for the equation (1) are derived. The main tools include Laplace transform, Arzela-Ascoli’s Theorem, Schauder’s ...

متن کامل

Existence and uniqueness of positive and nondecreasing solution for nonlocal fractional boundary value problem

In this article, we verify existence and uniqueness of positive and nondecreasing solution for nonlinear boundary value problem of fractional differential equation in the form $D_{0^{+}}^{alpha}x(t)+f(t,x(t))=0, 0

متن کامل

An Existence Result for Second-Order Impulsive Differential Equations with Nonlocal Conditions

The theory of impulsive differential equations is emerging as an important area of investigation since it is a lot richer than the corresponding theory of nonimpulsive differential equations. Many evolutionary processes in nature are characterized by the fact that at certain moments in time an abrupt change of state is experienced. That is the reason for the rapid development of the theory of i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex Variables and Elliptic Equations

سال: 2021

ISSN: ['1747-6941', '1747-6933']

DOI: https://doi.org/10.1080/17476933.2021.1900137